AdditiveEpsilonIndicator.h
Go to the documentation of this file.
1/*!
2 *
3 *
4 * \brief Calculates the additive approximation quality of a Pareto-front
5 * approximation.
6 *
7 *
8 *
9 * \author T.Voss, O.Krause
10 * \date 2010-2014
11 *
12 *
13 * \par Copyright 1995-2017 Shark Development Team
14 *
15 * <BR><HR>
16 * This file is part of Shark.
17 * <https://shark-ml.github.io/Shark/>
18 *
19 * Shark is free software: you can redistribute it and/or modify
20 * it under the terms of the GNU Lesser General Public License as published
21 * by the Free Software Foundation, either version 3 of the License, or
22 * (at your option) any later version.
23 *
24 * Shark is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU Lesser General Public License for more details.
28 *
29 * You should have received a copy of the GNU Lesser General Public License
30 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
31 *
32 */
33#ifndef SHARK_ALGORITHMS_DIRECTSEARCH_INDICATORS_ADDITIVE_EPSILON_INDICATOR_H
34#define SHARK_ALGORITHMS_DIRECTSEARCH_INDICATORS_ADDITIVE_EPSILON_INDICATOR_H
35
36#include <shark/LinAlg/Base.h>
37#include <limits>
38
39namespace shark {
40
41/// \brief Implements the Additive approximation properties of sets
42///
43/// The additive approximation measures which value must be subtracted from a reference set
44/// until it becomes dominated by a target set.
45///
46/// The implemented least contributor algorithm calculates the point
47/// That is approximated best by the remaining points. Thus the reference set is the full set and the target
48/// sets all in which one point is removed.
49///
50/// See the following reference for further details:
51/// - Bringmann, Friedrich, Neumann, Wagner. Approximation-Guided Evolutionary Multi-Objective Optimization. IJCAI '11.
53 /// \brief Given a pareto front, returns the index of the point which is the least contributer
54 ///
55 /// The archive has no effect on the volume as the archive is dominating all points in the front
56 template<typename ParetoFrontType, typename ParetoArchive>
57 std::size_t leastContributor( ParetoFrontType const& front, ParetoArchive const& /*archive*/)const{
58 std::size_t leastIndex = 0;
59 double leastValue = std::numeric_limits<double>::max();
60 for( std::size_t i = 0; i != front.size(); i++ ) {
61 //find the minimum distance the front with one point removed has to be moved to dominate the original front
62 double result = std::numeric_limits<double>::max();
63 for(std::size_t j = 0; j != front.size(); ++j){
64 if(j == i) continue; //this point is removed
65 result = std::min(result,max(front[j]-front[i]));
66 }
67 if(result < leastValue){
68 leastValue = result;
69 leastIndex = i;
70 }
71 }
72 //~ std::cout<<leastIndex<<" "<<leastValue<<std::endl;
73 return leastIndex;
74 }
75
76 template<typename ParetoFrontType, typename ParetoArchive>
77 std::vector<std::size_t> leastContributors( ParetoFrontType const& front, ParetoArchive const& archive, std::size_t K)const{
78 std::vector<std::size_t> indices;
79 std::vector<RealVector> points(front.begin(),front.end());
80 std::vector<std::size_t> activeIndices(points.size());
81 std::iota(activeIndices.begin(),activeIndices.end(),0);
82 for(std::size_t k=0; k != K; ++k){
83 std::size_t index = leastContributor(points,archive);
84
85 points.erase(points.begin()+index);
86 indices.push_back(activeIndices[index]);
87 activeIndices.erase(activeIndices.begin()+index);
88 }
89 return indices;
90 }
91
92 template<class random>
93 void init(std::size_t /*numOfObjectives*/, std::size_t /*mu*/, random& /*rng*/){}
94
95 template<typename Archive>
96 void serialize( Archive &, const unsigned int ) {}
97};
98
99}
100
101#endif