AbstractLoss.h
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief super class of all loss functions
6 *
7 *
8 *
9 * \author T. Glasmachers
10 * \date 2010-2011
11 * \file
12 *
13 * \par Copyright 1995-2017 Shark Development Team
14 *
15 * <BR><HR>
16 * This file is part of Shark.
17 * <https://shark-ml.github.io/Shark/>
18 *
19 * Shark is free software: you can redistribute it and/or modify
20 * it under the terms of the GNU Lesser General Public License as published
21 * by the Free Software Foundation, either version 3 of the License, or
22 * (at your option) any later version.
23 *
24 * Shark is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU Lesser General Public License for more details.
28 *
29 * You should have received a copy of the GNU Lesser General Public License
30 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
31 *
32 */
33
34#ifndef SHARK_OBJECTIVEFUNCTIONS_LOSS_ABSTRACTLOSS_H
35#define SHARK_OBJECTIVEFUNCTIONS_LOSS_ABSTRACTLOSS_H
36
38#include <shark/LinAlg/Base.h>
40namespace shark {
41
42/// \defgroup lossfunctions Loss Functions
43/// \brief Loss functions define loss values between a model prediction and a given label.
44
45/// \brief Loss function interface
46///
47/// \par
48/// In statistics and machine learning, a loss function encodes
49/// the severity of getting a label wrong. This is am important
50/// special case of a cost function (see AbstractCost), where
51/// the cost is computed as the average loss over a set, also
52/// known as (empirical) risk.
53///
54/// \par
55/// It is generally agreed that loss values are non-negative,
56/// and that the loss of correct prediction is zero. This rule
57/// is not formally checked, but instead left to the various
58/// sub-classes.
59///
60/// \ingroup lossfunctions
61template<class LabelT, class OutputT = LabelT>
62class AbstractLoss : public AbstractCost<LabelT, OutputT>
63{
64public:
66 typedef OutputT OutputType;
67 typedef LabelT LabelType;
68 typedef RealMatrix MatrixType;
69
72
73 /// \brief Const references to LabelType
74 typedef typename ConstProxyReference<LabelType const>::type ConstLabelReference;
75 /// \brief Const references to OutputType
76 typedef typename ConstProxyReference<OutputType const>::type ConstOutputReference;
77
81
82 /// \brief evaluate the loss for a batch of targets and a prediction
83 ///
84 /// \param target target values
85 /// \param prediction predictions, typically made by a model
86 virtual double eval( BatchLabelType const& target, BatchOutputType const& prediction) const = 0;
87
88 /// \brief evaluate the loss for a target and a prediction
89 ///
90 /// \param target target value
91 /// \param prediction prediction, typically made by a model
92 virtual double eval( ConstLabelReference target, ConstOutputReference prediction)const{
93 BatchLabelType labelBatch = Batch<LabelType>::createBatch(target,1);
94 getBatchElement(labelBatch,0)=target;
95 BatchOutputType predictionBatch = Batch<OutputType>::createBatch(prediction,1);
96 getBatchElement(predictionBatch,0)=prediction;
97 return eval(labelBatch,predictionBatch);
98 }
99
100 /// \brief evaluate the loss and its derivative for a target and a prediction
101 ///
102 /// \param target target value
103 /// \param prediction prediction, typically made by a model
104 /// \param gradient the gradient of the loss function with respect to the prediction
105 virtual double evalDerivative(ConstLabelReference target, ConstOutputReference prediction, OutputType& gradient) const {
106 BatchLabelType labelBatch = Batch<LabelType>::createBatch(target,1);
107 getBatchElement(labelBatch, 0) = target;
108 BatchOutputType predictionBatch = Batch<OutputType>::createBatch(prediction, 1);
109 getBatchElement(predictionBatch, 0) = prediction;
110 BatchOutputType gradientBatch = Batch<OutputType>::createBatch(gradient, 1);
111 double ret = evalDerivative(labelBatch, predictionBatch, gradientBatch);
112 gradient = getBatchElement(gradientBatch, 0);
113 return ret;
114 }
115
116 /// \brief evaluate the loss and its first and second derivative for a target and a prediction
117 ///
118 /// \param target target value
119 /// \param prediction prediction, typically made by a model
120 /// \param gradient the gradient of the loss function with respect to the prediction
121 /// \param hessian the hessian of the loss function with respect to the prediction
122 virtual double evalDerivative(
123 ConstLabelReference target, ConstOutputReference prediction,
124 OutputType& gradient,MatrixType & hessian
125 ) const {
127 return 0.0; // dead code, prevent warning
128 }
129
130 /// \brief evaluate the loss and the derivative w.r.t. the prediction
131 ///
132 /// \par
133 /// The default implementations throws an exception.
134 /// If you overwrite this method, don't forget to set
135 /// the flag HAS_FIRST_DERIVATIVE.
136 /// \param target target value
137 /// \param prediction prediction, typically made by a model
138 /// \param gradient the gradient of the loss function with respect to the prediction
139 virtual double evalDerivative(BatchLabelType const& target, BatchOutputType const& prediction, BatchOutputType& gradient) const
140 {
142 return 0.0; // dead code, prevent warning
143 }
144
145 /// from AbstractCost
146 ///
147 /// \param targets target values
148 /// \param predictions predictions, typically made by a model
149 double eval(Data<LabelType> const& targets, Data<OutputType> const& predictions) const{
150 SIZE_CHECK(predictions.numberOfElements() == targets.numberOfElements());
151 SIZE_CHECK(predictions.numberOfBatches() == targets.numberOfBatches());
152 int numBatches = (int) targets.numberOfBatches();
153 double error = 0;
154 SHARK_PARALLEL_FOR(int i = 0; i < numBatches; ++i){
155 double batchError= eval(targets.batch(i),predictions.batch(i));
157 error+=batchError;
158 }
159 }
160 return error / targets.numberOfElements();
161 }
162
163 /// \brief evaluate the loss for a target and a prediction
164 ///
165 /// \par
166 /// convenience operator
167 ///
168 /// \param target target value
169 /// \param prediction prediction, typically made by a model
170 double operator () (LabelType const& target, OutputType const& prediction) const
171 { return eval(target, prediction); }
172
173 double operator () (BatchLabelType const& target, BatchOutputType const& prediction) const
174 { return eval(target, prediction); }
175
176 using base_type::operator();
177};
178
179
180}
181#endif