Shark machine learning library
Installation
Tutorials
Benchmarks
Documentation
Quick references
Class list
Global functions
include
shark
Algorithms
Trainers
Budgeted
AbstractBudgetMaintenanceStrategy.h
Go to the documentation of this file.
1
//===========================================================================
2
/*!
3
*
4
*
5
* \brief Abstract Budget maintenance strategy
6
*
7
* \par
8
* This holds the interface for any budget maintenance strategy.
9
*
10
*
11
*
12
*
13
* \author Aydin Demircioglu
14
* \date 2014
15
*
16
*
17
* \par Copyright 1995-2017 Shark Development Team
18
*
19
* <BR><HR>
20
* This file is part of Shark.
21
* <https://shark-ml.github.io/Shark/>
22
*
23
* Shark is free software: you can redistribute it and/or modify
24
* it under the terms of the GNU Lesser General Public License as published
25
* by the Free Software Foundation, either version 3 of the License, or
26
* (at your option) any later version.
27
*
28
* Shark is distributed in the hope that it will be useful,
29
* but WITHOUT ANY WARRANTY; without even the implied warranty of
30
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31
* GNU Lesser General Public License for more details.
32
*
33
* You should have received a copy of the GNU Lesser General Public License
34
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
35
*
36
*/
37
//===========================================================================
38
39
40
#ifndef SHARK_MODELS_ABSTRACTBUDGETMAINTENANCESTRATEGY_H
41
#define SHARK_MODELS_ABSTRACTBUDGETMAINTENANCESTRATEGY_H
42
43
#include <
shark/Data/Dataset.h
>
44
#include <
shark/Data/DataView.h
>
45
#include <
shark/Models/Kernels/AbstractKernelFunction.h
>
46
#include <
shark/Models/Kernels/KernelExpansion.h
>
47
48
49
namespace
shark
50
{
51
52
///
53
/// \brief This is the abstract interface for any budget maintenance strategy.
54
///
55
/// To allow for easy exchange of budget maintenance strategies, each of
56
/// them should derive from this class. The only function it defines is addToModel,
57
/// which, when implemented, will add a given supportvector and given alphas
58
/// to the provided model by applying the respective budget maintenance strategy.
59
/// (Note that not all merging strategies need the alphas, but some do)
60
///
61
template
<
class
InputType>
62
class
AbstractBudgetMaintenanceStrategy
63
{
64
65
public
:
66
typedef
KernelExpansion<InputType>
ModelType
;
67
typedef
LabeledData<InputType, unsigned int>
DataType
;
68
typedef
typename
DataType::element_type
ElementType
;
69
70
AbstractBudgetMaintenanceStrategy
()
71
{ }
72
73
74
/// this is the main interface, which adds a given supportvector with
75
/// given alpha coefficients to the model.
76
///
77
/// @param[in,out] model the model the strategy will work with
78
/// @param[in] alpha alphas for the new budget vector
79
/// @param[in] supportVector the vector to add to the model by applying the maintenance strategy
80
///
81
virtual
void
addToModel
(
ModelType
& model,
InputType
const
& alpha,
ElementType
const
& supportVector) = 0;
82
83
84
85
/// this will find the vector with the smallest alpha, measured in 2-norm
86
/// in the given model. now there is a special case: if there is somewhere a zero
87
/// coefficient, then obviously this is the smallest element. in this case we
88
/// just proceed as usual. the caller must decide what to do with such a vector.
89
/// \par note: The model is not allowed to be empty and an exception is thrown in this case.
90
///
91
/// @param[in] model the model we want to search
92
/// @param[out] minIndex the index of the vector with smallest coefficient
93
/// @param[out] minAlpha the 2-norm of the alpha coefficient of the found vector
94
///
95
static
void
findSmallestVector
(
ModelType
const
& model,
size_t
&minIndex,
double
&minAlpha){
96
SHARK_RUNTIME_CHECK
(model.
alpha
().size1(),
"Model is empty!"
);
97
// we do not have it, so we remove the vector with the
98
// smallest 'influcence', measured by the smallest alpha
99
100
minAlpha = norm_2(row(model.
alpha
(), 0));
101
minIndex = 0;
102
103
for
(
size_t
j = 1; j < model.
alpha
().size1(); j++)
104
{
105
double
currentNorm = blas::norm_2(row(model.
alpha
(), j));
106
107
if
(currentNorm < minAlpha)
108
{
109
minAlpha = norm_2(row(model.
alpha
(), j));
110
minIndex = j;
111
}
112
}
113
}
114
115
116
/// return the class name
117
std::string
name
()
const
118
{
return
"AbstractBudgetMaintenanceStrategy"
; }
119
};
120
121
122
}
123
#endif