AbsoluteLoss.h
Go to the documentation of this file.
1/*!
2 *
3 *
4 * \brief implements the absolute loss, which is the distance between labels and predictions
5 *
6 *
7 *
8 *
9 * \author Tobias Glasmachers
10 * \date 2011
11 *
12 *
13 * \par Copyright 1995-2017 Shark Development Team
14 *
15 * <BR><HR>
16 * This file is part of Shark.
17 * <https://shark-ml.github.io/Shark/>
18 *
19 * Shark is free software: you can redistribute it and/or modify
20 * it under the terms of the GNU Lesser General Public License as published
21 * by the Free Software Foundation, either version 3 of the License, or
22 * (at your option) any later version.
23 *
24 * Shark is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU Lesser General Public License for more details.
28 *
29 * You should have received a copy of the GNU Lesser General Public License
30 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
31 *
32 */
33#ifndef SHARK_OBJECTIVEFUNCTIONS_LOSS_ABSOLUTELOSS_H
34#define SHARK_OBJECTIVEFUNCTIONS_LOSS_ABSOLUTELOSS_H
35
36
38namespace shark{
39
40
41///
42/// \brief absolute loss
43///
44/// The absolute loss is usually defined in a single dimension
45/// as the absolute value of the difference between labels and
46/// predictions. Here we generalize to multiple dimensions by
47/// returning the norm.
48///
49template<class VectorType = RealVector>
50class AbsoluteLoss : public AbstractLoss<VectorType, VectorType>
51{
52public:
56
57 /// constructor
59 { }
60
61
62 /// \brief From INameable: return the class name.
63 std::string name() const
64 { return "AbsoluteLoss"; }
65
66 // annoyingness of C++ templates
67 using base_type::eval;
68
69 /// evaluate the loss \f$ \| labels - predictions \| \f$, which
70 /// is a slight generalization of the absolute value of the difference.
71 double eval(BatchLabelType const& labels, BatchOutputType const& predictions) const{
72 SIZE_CHECK(labels.size1() == predictions.size1());
73 SIZE_CHECK(labels.size2() == predictions.size2());
74
75 double error = 0;
76 for(std::size_t i = 0; i != labels.size1(); ++i){
77 error+=blas::distance(row(predictions,i),row(labels,i));
78 }
79 return error;
80 }
81};
82
83
84}
85#endif